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This article describes new models in population genetics that extend the neutral
Wright–Fisher model by including strong selection and mutation. Fixation times
are studied in the limit of small mutation probabilities within the framework of
Markov chains with rare transitions. The main result outlines the role of the
discrete geometry of the fitness landscape and provides a mean for estimating
the expected number of generations for an individual with better fitness value to
appear. Some connections to evolutionary algorithms are discussed as well.
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1. INTRODUCTION

Mathematical models in population genetics usually aim at characterizing
the gene distribution dynamics in evolving populations quantitatively.
Among several goals,these models provide the means to estimate the prob-
abilities of gene fixation, i.e., the condition by which an allele or a group of
alleles becomes the only present in a population because of selection.
Both deterministic and stochastic techniques have been introduced for

this purpose. Deterministic models rely on the approximation of an infinite
population size. In contrast, probabilistic methods deal with finite popula-
tions. The methods for computing fixation probabilities or averaged fixa-
tion times include the analysis by means of Markov chains using exact
computations from generating functions, (1) or use approximations by dif-
fusion processes. In this case, the underlying models are known as Wright–



Fisher models. (2–4) Although weak selection is sometimes considered, these
models are mostly intented to describe neutral evolution.
In contrast, this article focusses on fixation times when selection is a

dominant mechanism and when the probability of mutation is small. In this
context, Markov chains with rare transitions provide a natural framework
for describing evolving populations when the typical pattern includes
abrupt appearance of new genotypes and the relative stability of such
genotypes in the population (stasis). Such a phenomenon is called evolution
by punctuated equilibria, and is related to metastability.
This section presents an introductory model that will be useful as

an illustration throughout the article. Several variants of this elementary
example could be clearly studied in a similar way. Consider a population
of n individuals for which all possible genotypes consist of a (large) finite
set. In order for gene frequencies to change, either mutation or selection
must generally occur. Mutation occurs at a very slow rate and its chance
of transmission is small. At the opposite, the selection pressure can be
high, and many mutated genes may disappear because their carrier cannot
survive. Individuals might be represented as DNA sequences from a
molecular region where there appears to be no recombination (e.g., mito-
chondrial DNA). The molecular region is passed on intact, modulo the
effect of mutational substitutions, from parent to offspring. The evolu-
tionary process under consideration can be modelled as follows. An offspr-
ing genotype can be created according to

• either the random selection of a parent and a mutation from the
parent genotype,

• or the random selection of a parent and the transmission of the
parent genotype,

• or the transmission of the ‘‘best’’ genotype in the parental genera-
tion (strong selection).

The first event occurs with a small probability p that represents the
mutation probability. The second event occurs with probability (1−p) q
where q is the conditional transmission probability given that the mutation
does not happen. The last event can be interpreted as follows. If the carrier
of a mutation disappears, it is replaced by an offspring whose genotype
coincides with the ‘‘best’’ genotype in the previous generation. The word
‘‘best’’ refers to some specific fitness or adaptive function. This event
happens with probability (1−p)(1−q). The last quantity represents the
theoretical fraction of individuals having the same genotype. In our model
this fraction would be high.
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The article is organized as follows. Section 2 presents the models under
interest more specifically, and states the main results about fixation times.
Proofs are deferred to Section 3 together with auxillary results. During the
recent years, several models of artificial evolution have emerged based on
the metaphor of natural evolution. (5, 6) These models are often called evolu-
tionary algorithms as they mimic the computational abilities of biological
systems. Several connections with these models are discussed, as recent
progress has also been made by using techniques based on Markov chains
with rare transitions in this framework. (7–10)

2. MAIN RESULTS

2.1. Models

2.1.1. Definitions

Let E be a finite subset of states (typically a set of genotypes) and X
the set of configurations

X=En, n \ 1 (1)

that can be obtained from the sampling of n genotypes in a population.
The elements of X are denoted x=(x1,..., xn) where each xa corresponds to
an individual genotype. The integer n corresponds to the population size.
Within the set of genotypes, transitions between states can be

described by a finite dimensional stochastic matrix

p=(p(a, b))a, b ¥ E. (2)

This matrix contains the transition probabilities corresponding to the sub-
stitutions that may occur during the offspring generation.
The fitness function is a nonnegative function defined on E. This

function is involved in the selection mechanism during the evolution of
populations. The fitness landscape (f, p) is defined as a graph whose ver-
tices are weighted by the discrete values of the fitness function and the
edges by the transition probabilities p(a, b). Assuming that two different
genotypes cannot be given the same fitness simplifies the description signi-
ficantly, and we make use of this simplifying hypothesis. Also we denote

x̂=arg max{f(xi), i=1,..., n}. (3)

Selection is a process that tends to maximize the fitness of individuals.
In this article, the evolution of populations is modelled with Markov

chains with rare transitions. In such models, transition probabilities are
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controlled by a small parameter p > 0. This parameter represents the rate
at which an individual undergoes a mutation. Let Xt=x be the state of the
population at generation t. The probability that the population be Xt+1=y
at time t+1 is asymptotically equivalent to

p(x, y) ’ c(x, y) pV(x, y) as pQ 0 (4)

where V(x, y) \ 0, c(x, y) \ 0 and ;y p(x, y)=1 for all p \ 0.
Examples of Markov chains with rare transitions are often encoun-

tered in statistical mechanics (11) and specifically in the study of stochastic
Ising models at low temperatures. (12)

In neutral genetic theory, it is usually argued that evolving populations
may spend large periods of time undergoing neutral mutation, i.e., staying
at a constant level in the fitness landscape.
In epochal evolution, the evolutionary timescale may be dominated

by long periods of neutral epochs interrupted by short periods of rapid
fitness increase, i.e., punctuated equilibrium. (13–15) Some macroscopic state
variables that describe the evolving population exhibit an alternation of
periods of stasis (epochs) and sudden transitions. Such metastable evolu-
tionary dynamics may come about through the existence of ‘‘fitness
barriers’’ in the fitness landscape of the evolving population. (16, 17) Examples
of evolutionary models that can be fitted into the framework of Markov
chains with rare transitions were provided by van Nimwegen et al. (18, 19)

2.1.2. Examples

This section describes two examples and the way by which they can be
fitted into the above formalism. The computational properties of the first
example have been studied in ref. 10 using large deviations and simulated
annealing techniques. The second example corresponds to the evolution
mechanisms presented in the introduction.
In the first example, each parent generates a single offspring indepen-

dent from the others. With probability 1−p, the offspring genotype is
copied from the best parent genotypes (those for which f is maximal).
With probability p, the offspring genotype undergoes a mutation from the
parent genotype according to the transition matrix p.
More specifically, let x and y be the parent and the offspring popula-

tion respectively. Define V(x, y) as the minimal number of mutations that
are necessary to generate population y from population x. The term
minimal avoids the discussion of coincidences due to mutations that might
result in x̂. In addition, let M(x, y) be the subset of individuals in popula-
tion y that correspond to the minimal number of mutations (for such
mutations, the offspring genotypes differ from the best genotypes in the
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previous generation, and the following relationship holds V(x, y)=
#M(x, y)). Then, we have

-x, y ¥X, p1(x, y) ’ c1(x, y) pV(x, y) as pQ 0, (5)

with

c1(x, y)= D
i: yi ¥M(x, y)

p(xi, yi). (6)

As a variant, transmission can be added to this model. Conditional to
the absence of mutation, either the parent genotype is transmitted to the
offspring without modification or the offspring genotype is copied from
the best parent genotypes. The first event occurs with probability q and the
second event with probability 1−q. The basic case corresponds to q=0. In
this situation, we have

-x, y ¥X, p1(x, y) ’ c1(x, y)1
p
1−q
2V(x, y), (7)

with

c1(x, y)=qnT(x, y)(1−q)n−nT(x, y)− n̂(x, y) D
i: yi ¥M(x, y)

p(xi, yi). (8)

Here M(x, y) is the subset of individuals in population y that are not in
population x, nT(x, y) is number of individuals in y such that yi=xi and
yi ] x̂, and n̂(x, y) is number of individuals in y such that yi=xi and
yi=x̂.
Describing the second example formally requires more notations. In

the second example, each parent may create several offspring as in the
Wright–Fisher model. Offspring are created by uniform sampling (with
replacement) from the parent population. Again, mutations may occur with
probability p. Exact transmission of the genotype is considered as well, and
is assumed to happen with probability q conditionally to the absence of
mutation. We assume that q=ph, h > 0. Otherwise the offspring genotype
is sampled from the best parent genotypes.
Again, let M(x, y) be the subset of individuals in population y that

are not in population x, and VM(x, y)=#M(x, y) be the number of such
individuals. Let T(x, y) be the subset of common members in y and x with
genotypes different from x̂, and VT(x, y)=#T(x, y). Notations M and
T stand for mutation and transmission respectively. Finally, let n(xi)/n

Sharp Asymptotics for Fixation Times 315



denote the frequency of genotype xi in population x. The evolution can be
modelled according to the following Markov chain.

-x, y ¥X, p2(x, y) ’ c2(x, y) pVM(x, y)+hVT(x, y), (9)

with

c2(x, y)= D
i: yi ¥ T(x, y)

n(yi)
n

D
i: yi ¥M(x, y)

C
n

a=1

p(xa, yi)
n

. (10)

2.2. Statements of Results

The results presented in this paper bear upon hitting times for the
Markovian population dynamics defined in the previous sections. Before
giving the result, a set of definitions is needed.
A trajectory cE is a sequence of mutations, i.e., a path for the Markov

chain of matrix p on E. We denote

p(cE)=p(a0, a1) · · ·p(aa−1, aa), a=a(cE). (11)

For all a, b ¥ E, let d(a, b) be the minimal number of transition needed to
reach b from a. We denote by CEaB the subset of minimal trajectories from a
to B … E, i.e., the subset of trajectories for which a(cE)=d(a, B).

Theorem 2.1. Consider the stochastic matrix P1 defined in Sec-
tion 2.1.2 Eq. (7) or the stochastic matrix P2 defined in Eq. (9). Let (Xt) be
the associated Markov chain. Let a ¥ E and (a) be the uniform population
(a,..., a) that consists of n copies of a. Define the subset of X

A={x ¥X, f(x̂) > f(a)}. (12)

Let y(a) A denote the hitting time of A starting from (a)

y(a) A=min{t \ 0; Xt ¥ A, X0=(a)} (13)

and consider the event

E=(Xt ¦ a for all t [ y(a) A). (14)

For P1, we have

E[y(a) A | E] ’
(p/1−q)−d(a, A)

n(1−q);cE ¥ CEaB
p(cE)

as pQ 0, (15)
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where d(a, A) is the minimal number of mutation steps needed to reach A
from (a), and B={b ¥ E, f(b) > f(a)}. For P2, we have

E[y(a) A | E] ’
p−d(a, A)

n;cE ¥ C
E
aB
p(cE)

as pQ 0. (16)

In addition, we have

Var[y(a) A] ’ E[y(a) A]2 as pQ 0 (17)

for both P1 and P2.

Theorem 2.1 is stated conditionally to the realization of the event E.
This condition is more a convenient technical assumption than a restrictive
hypothesis. Indeed, one has

Prob(E) ’ 1, as pQ 0, (18)

if the chain is started from (a).
The computation of d(a, A) in Eq. (15) can be achieved from the

knowledge of the fitness landscape only, i.e., the values of the fitness func-
tion for all vertices in the mutation graph. Then, d(a, A) represents the
distance from the genotype a to the subset of genotypes of better adapta-
tion, and has a natural ‘‘geometric’’ interpretation.
The above result has an obvious interpretation in term of fixation

times for the evolutionary dynamics defined from P1 or P2. In the models
presented in Section 2.1.2, populations most often consist of copies of a
single genotype. Mutation and transmission are mechanisms that enable
new genotypes to appear and survive but for few generations only. When a
better adapted genotype appears, it becomes dominant in the population
abruptly and fixation occurs. For small mutation probabilities, Eq. (15) is a
good estimation of the average fixation time.

3. PROOFS

This section is devoted to the proofs of our main results. A general
result for Markov chains with rare transitions is presented first. Then,
specific results regarding the examples of Section 2.1.2 are stated. An addi-
tional result will be stated in Section 3.3.
We start with some definitions borrowed from ref. 20. The objects c,

Cxy, c(c) will have definitions relative to p similar to those of cE, C
E
ab, p(c

E).
While the first set of definitions corresponds to the individual level, this
new set corresponds to the population level.
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Consider a trajectory c of a Markov chain of matrix P satisfying
Eq. (4)

c: x0 Q x1 Q · · · Q xa,

where a=a(c) is the length of c. We set

p(c)=p(x0, x1) · · · p(xa−1, xa) ’ c(c) pV(c). (19)

For all x, y ¥X, let

W(x, y)=min{V(c); c: x0=xQ x1 Q · · · Q xa=y, a \ 1}, (20)

and, for A …X,

W(x, A)=min{W(x, y); y ¥ A}. (21)

We denote by CxA the subset of minimal trajectories from x to A, i.e.,
the subset of trajectories for which V(c)=W(x, A).
Let x ¥X and A …X. The hitting time of A starting from x is

yx A=min{t \ 0; Xt ¥ A, X0=x}. (22)

Theorem 3.1. Consider a stochastic matrix P satisfying Eq. (4).
Assume that

1. there exists a unique xg in X such that p(xg, xg) ’ 1 as p goes to 0;

2. there is no closed trajectory c such that V(c)=0 and a(c) \ 2.

Then, for all Â ¦ xg, we have

E[yx*A] ’ 1 C
c ¥ Cx*A

c(c) D
x ¥ c0x* 2 A

1
1−p(x, x)
2−1 p−W(x*, A) as pQ 0.

(23)

In addition, we have

Var[yx*A] ’ E[yx*A]
2 as pQ 0. (24)

Under the theorem’s assumption, the front term in Eq. (23) converges
to a constant as p goes to zero. The first result stated in Theorem 3.1
establishes that the average hitting of time of an arbitrary subset A
becomes proportional to p−W(x*, A), and the proportionality coefficient is
known.
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The constant and the order parameter W(xg, A) can hardly be made
explicit in general situations. Nevertheless, this result will be applied to
studying hitting times for the stochastic population dynamics defined by P1
and P2.

3.1. Preliminary Remarks

Let P denote the transition matrix associated with the Markov chain
(Xt) defined in Eq. (4). The Markov chain (Xt) is defined on a finite state
space X, and the elements of X can be labelled 1,..., m. Up to this point, no
distinction will be made between X and the set of labels {1, 2,..., m}.
Let A be a subset of X. Let T denote the vector (yyA)y ¨ A and PA the

matrix whose components are the p(x, y) for x, y ¨ A. According to a clas-
sical result, (21) T is given by

T=Q−1A (−1), (25)

where QA=PA−I and (−1) denotes the vector with all components equal
to −1.
Let DA be the determinant of QA

DA=det(QA) (26)

and let DAxy denote the minor (x, y) of QA. With these notations, we have

E[yxA]=− C
y ¨ A
(−1)x+y

DAxy
DA
. (27)

Let x and y be two elements of X such that x ¨ A. C̃Axy will denote the
set of paths

c: xQ x1 Q · · · Q xk Q y, xi ¨ A. (28)

ThenWA(x, y) is defined as

WA(x, y)=min{V(c); c ¥ C̃Axy} (29)

and CAxy={c ¥ C̃
A
xy; V(c)=W

A(x, y)}.
Note that for any subset Y …X and Q any square matrix on Y, we

have

det(Q)= C
s ¥ S(Y)

E(s) D
y ¥ Y
q(y, s(y)) (30)
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where S(Y) is the symmetric group of Y and E(s) is the signature of s. For
y0 in Y and s ¥ S(Y), consider the orbit of y0

c=y0 Q s(y0)Q · · · Q s j(y0)=y0 (31)

then, we have

det(Q)= C
c ¥ C̃y0y0

(−1)a(c)+1 q(c) C
s ¥ S(Y0c)

E(s) D
y ¥ Y0c

q(y, s(y)). (32)

3.2. Proof of Theorem 3.1

The proof is decomposed into several steps.

Step 1. Computation of DA—Case 1: xg ¥ A.

We have

DA=D
y ¨ A
(p(y, y)−1)+o(1) (33)

Proof. Take s equal to identity in Eq. (30), then the corresponding
term in the sum is<y ¨ A p(y, y)−1. Under hypothesis (H1), we have

p(y, y)=1+o(1) iff y=xg. (34)

Hence the term<y ¨ A p(y, y)−1 is of order 0.
If s differs from the identity, there exists an x0 ¨ A such that

s(x0) ] x0. Then let c be the orbit of x0. Since a(c) \ 2, hypothesis (H2)
implies that V(c) > 0. Hence the corresponding term in Eq. (32) is of order
higher (or equal) than 1. L

Step 2. Computation of DA—Case 2: xg ¨ A

We have

DA= C
c ¥ C̃x*A

(−1)a(c) p(c) DA 2 c (35)

Proof. let (Cx)x ¨ A denote the columns of QA. Let CA denote a vector
whose elements are equal to ;y ¥ A p(x, y) with x ¨ A. The operation that
replaces the column Cx* by ;y ¨ A Cy leaves the determinant unchanged. Let
Q −A be the matrix obtained from QA according to this transformation. Since
the matrix P is stochastic, we have

C
y ¨ A
Cy=−CA (36)
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and

q −A(x
g
Q · · · Q xa Q xg)=−qA(xg Q · · · Q xa Q A) (37)

Replacing this equality in Eq. (32) completes the proof of the result. L

Step 3. Computation of DA
xy

We have

(−1)x+y DAxy= C
c ¥ C̃Ayx

(−1)a(c) p(c) DA 2 c. (38)

Proof. Let Q'A be the matrix obtained from QA by setting the all
coefficients in the line x and all coefficients in the column y equal to 0,
except for the coefficient corresponding to (x, y) which is set up to 1.
Obviously, we have

det(Q'A)=(−1)
x+y DAxy. (39)

Let cŒ=xQ x1 Q · · · Q xa Q x be a path in c̃
A
yy. Since q

'

A(x, t)=0 for
t ] x, we have q'A(cŒ) ] 0 if and only if x1=y. Then,

q'A(cŒ)=qA(y, x2) · · · qA(xa, x)=qA(yQ x2 Q · · · Q xa Q x). (40)

Reporting this in Eq. (32) leads to the result. L

Step 3. Computation of Mean Fixation Times

Now, we are ready for the final step in proving Theorem 3.1. First,
notice that

DA= C
c ¥ C̃x*A

(−1)a(c) p(c) DA 2 c (41)

= C
c ¥ C̃x*A

(−1)a(c) c(c) pV(c) DA 2 c (42)

where, according to Eq. (33),

DA 2 c= D
y ¨ A 2 c

(p(y, y)−1)+o(1). (43)

Therefore, we have

DA= C
c ¥ C̃x*A

(−1)a(c) c(c) pV(c) 1 D
y ¨ A 2 c

(p(y, y)−1)+o(1)2 . (44)
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The dominant term in the above sum is obtained by summing over all
terms for which V(c) is minimal. This yields V(c)=W(xg, A) and the sum
runs over all c ¥ Cx*A. Replacing in Eq. (44), we have

DA= C
c ¥ Cx*A

(−1)a(c) c(c) pW(x*, A) D
y ¨ A 2 c

(p(y, y)−1) (1+o(1)). (45)

Since the product <y ¨ A 2 c (p(y, y)−1) contains m−|A|− a(c) terms
(the end of c is in A), we have

D
y ¨ A 2 c

(p(y, y)−1)=(−1)m−|A|− a(c) D
y ¨ A 2 c

(1−p(y, y)), (46)

and

DA=pW(x*, A)(−1)m−|A|−1 C
c ¥ Cx*A

c(c) D
y ¨ A 2 c

(1−p(y, y)) (1+o(1)). (47)

Proceeding with all other minors in a similar way leads to the follow-
ing result

(−1)m−|A|−1 DAx*x*= D
y ¨ A 2 x*

(1−p(y, y))+o(1). (48)

If x ] xg, DAxx is given by

DAxx=D
A 2 x. (49)

If x=xg or y=xg, xg is in A 2 c for all c in CAyx. Then, we have

|DAxy |=1 C
c ¥ CAyx

c(c) D
z ¨ A 2 c

(1−p(z, z))2 pWA(y, x)(1+o(1)). (50)

and

(−1)m−|A|−1 (−1)+x+y |DAxy |=D
A
xy. (51)

In order to compute the mean hitting time, recall that

E[yx*A]=− C
y ¨ A
(−1)x*+y

DAyx*
DA
. (52)
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Since p(xg, xg)=1+o(p), we have V(xg, y) > 0 for all y ] xg such
that c(xg, y) ] 0, and

WA(xg, y) \W(xg, y) > 0. (53)

Hence, we obtain

C
y ¨ A
(−1)x*+y DAyx*=D

A
x*x*+o(1). (54)

An interesting consequence is

E[yx*A]=−
DAx*x*
DA
(1+o(1)). (55)

Finally, we have

E[yx*A]=
<y ¨ A 2 x* (1−p(y, y))

pW(x*, A);c ¥ Cx*A
<y ¨ A 2 c (1−p(y, y)) c(c)

(1+o(1)) (56)

=Kp−W(x*, A)(1+o(1)) (57)

where

K=1 C
c ¥ Cx*A

c(c)
<y ¥ c0(x* 2 A) 1−p(y, y)

2−1. (58)

This concludes the first part of Theorem 3.1. L

Step 4. Computation of Variances

The second part of Theorem 3.1 is devoted to the computation of
variances. Let V be the vector of components equal to E[y2xA], x ¨ A. Some
basic linear algebra shows that

V=1+PAV+2PAT=PAV+2T−1 (59)

and

V=(Q−1A +2Q
−2
A ) 1 (60)

The coefficient (x, y) in Q−2A is equal to

Q−2A (x, y)=(−1)
x+y C

z ¨ A
DAzxD

A
yz(D

A)−2. (61)
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The term DAzxD
A
yz is of order O(p

WA(x, z)+WA(z, y)) for z ] x and z ] y. For
all z ] xg, we have DAzx*=o(1), and if z=x

g, we have DAyx*=o(1) for all
y ] xg. Finally, for x=xg, the only term DAzxD

A
yz of order 0 is D

A
x*x*D

A
x*x*,

and hence

E[y2x*A]=2 1
DAx*x*
DA
22 (1+o(1))=2E[yx*A]2 (1+o(1)) (62)

and

Var(yx*A)=E[yx*A]
2 (1+o(1)). (63)

3.3. Proof of Theorem 2.1

The proof of Theorem 2.1 is by far shorter than the previous one. The
result arises from Theorem 3.1 directly. The trajectories that are the most
probable with respect to P1 or P2 have been described in details in ref. 10.
Let us start with P1. In particular, the most probable trajectory from a

uniform population (a) to a population containing an individual ‘‘better’’
than a consists in keeping n−1 individuals equal to a and letting one indi-
vidual evolve from a to b with adaptive value ‘‘better’’ than a. For each
path, cE de E, there are n paths c in X that correspond to the n choices for
the offspring of mutation (say i). Along a path

c: (a)Q · · · Q xkQ xk+1Q · · · Q y ¥ A,

the transition probabilities satisfy

p1(xk, xk+1)=p(x
k
i , x

k+1
i ) p+o(p). (64)

If k ] 0, we have xki ] a and x
k
j=a for j ] i. Then,

p1(xk, xk))=q+o(1). (65)

Conditionally to E, we apply Theorem 3.1 with xg=(a)

E[y(a) A |E] ’
(p/1−q)−d(a, B)

n(1−q);cE ¥ C
E p(cE)

. (66)

A similar result holds for P2. Again, the most probable trajectory from
a uniform population (a) to a population containing an individual ‘‘better’’
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than a consists in keeping n−1 individuals equal to a and letting one indi-
vidual go from a to b with adaptive value ‘‘better’’ than a. For each path,
cE de E, there are na(c

E) paths c in X corresponding to the n choices for the
offspring of mutation at each of the a(cE) steps.
Along he path

c: (a)Q · · · Q xkQ xk+1Q · · · Q y ¥ A,

let xkik denote the offspring of mutation at step k. The transition probability
satisfies

p2(xk, xk+1)=p(x
k
ik
, xk+1ik+1

) p/n+o(p) (67)

if k ] 0 (because in this case n(xkik )=1) and

p2((a), x1)=p(a, x
1
i1
) p+o(p) (68)

if k=0 (in this case we have n(xkik )=n(a)=n).
If k ] 0, we have xkik ] a and x

k
j=a for j ] ik. Then,

p2(xk, xk))=1+o(1). (69)

Conditionally to E, we apply Theorem 3.1 with xg=(a) and obtain

E[y(a) A |E] ’
p−d(a, B)

n;cE ¥ C
E p(cE)

. (70)

3.4. An Additional Result

This section presents an additional result that describes the probability
of hitting B before A. This result emphasizes the exponential-like behaviour
of hitting times for small mutation probabilities.
Let A and D be two subsets of X and x an element of X such that

x ¨ D. The hitting time of A starting from x before entering D is

yDxA=min{t \ 0; X0=x; Xt ¥ A; x1,..., Xt−1 ¨ A 2 D}. (71)

The expectation of yDx*A is given by

E[yDx*A]=1pW
D(x*, A) C

c ¥ CDx*A

c(c)
<y ¥ c0(x* 2 A) (1−p(y, y))

2−1 (1+o(1)). (72)

Sharp Asymptotics for Fixation Times 325



Theorem 3.2. Let A and B be two non intersecting subsets in X
such that xg ¨ A and xg ¨ B. We have

Prob(yx*A < yx*B)=
E[yA 2 B

x*B ]
E[yA 2 B

x*A ]+E[y
A 2 B
x*B ]

(1+o(1)). (73)

Proof. let RA (resp. RB) be the vector whose components are p(y, A)
(resp p(y, B)) for y ¨ A 2 B. The Markov chain (Xt) is modified so that if
Xt ¥ A 2 B then Xt+1=Xt. The transition matrix of the modified chain is
equal to

P̃=R
PC RA RB
0 1 0

0 0 1

S (74)

By a standard argument, we have

Prob(yxA < yxB)= lim
nQ.
p̃n(x, A), (75)

and

Prob(y.A < y.B)=−(PA 2 B−I)−1 RA. (76)

Replacing (PA 2 B−I)−1 yields

Prob(yx*A < yx*B)=−
;y ¨ A 2 B (−1)x*+y D

A 2 B
yx* p(y, A)

DA 2 B

=−
;y ¨ A 2 B ;c ¥ C̃

A 2 B
x*y
(−1)a(c) p(c) p(y, A) DA 2 B 2 c

DA 2 B .

Now, transform c=xg Q · · · Q y into cŒ=xg Q · · · Q yQ z ¥ A. The new
path satisfies

p(cŒ)=p(c) p(y, z). (77)

Therefore, we have

Prob(yx*A < yx*B)=
;cŒ ¥ C̃

A 2 B
x*A
(−1)a(cŒ) p(cŒ) DA 2 B 2 cŒ

;cŒ ¥ C̃
A 2 B
x*A 2 B

(−1)a(cŒ) p(cŒ) DA 2 B 2 cŒ . (78)

The result follows by splitting the denominator into two inverse expecta-
tions. L
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This result provides an explanation why natural or simulated popula-
tion processes may not follow their most probable trajectories (that lead to
the closest individual with better adaptive value). Instead, shortcuts are
always possible. Regarding simulated evolution procedures in optimization,
this result also suggests that maintaining short independent parallel runs of
population algorithms might be more efficient than keeping a single long
run given the same computational resource.

3.5. Connections to Evolutionary Algorithms

During the recent years, several models of evolutionary algorithms
have been studied within the simulated annealing framework. (7–10) Simulat-
ing these Markovian models leads the user to the observation of metastable
states, and long stasis during which few improvements of the solutions can
be obtained. Section 3.5.1 presents an overview of recent results for these
particular Markov chains with rare transitions. These results use the for-
malism of large deviations. Most of them actually required trajectorial
techniques of proof that differ from the algebraic techniques involved in
Section 3. Another difference arises from the very nature of the results.
Computational properties of evolutionary algorithms are usually inves-
tigated with mutation probabilities depending on a positive temperature
parameter that slowly decreases to zero. While the above references
describe simulated annealing-like theories, the next section extracts and
restates the results that bear on hitting time of an optimal population (i.e.,
a population containing an individual genotype of optimal fitness).
In contrast to the statements presented in Section 2.2, the results

obtained via the large deviations formalism are rough logarithmic equiva-
lents. The implications of precise equivalents in implementing evolutionary
algorithms will be discussed in Section 3.5.2.

3.5.1. A Brief Overview of Evolutionary Algorithms Results

In describing the dynamics of an ergodic Markov chain with rare
transitions, subsets called cycles play a central role. (7, 20, 22) A subset C …X
is a cycle if either it consists of a single population, or for all x, y in C, the
expected number of ‘‘cyclic’’ visits to x followed by y before exiting from C
is exponential

E[Nxy(C)] % p−Kxy(C), Kxy(C) > 0 (79)

(the symbol % means that the relationship is a logarithmic equivalent). As
a consequence, a cycle should be explored systematically before the chain
exits and proceeds with an other cycle. Here is a trajectorial definition of
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cycles, which is more amenable to a mathematical analysis. (7, 23). For all
x, y ¥X, x ] y, and each trajectory c, define the elevation as

H(c)=max
0 [ k < r

{V(xk)+V(xk, xk+1)}, (80)

with the maximum taken over all vertices in c, and

V(x)=lim
pQ 0
log mp(x)/log p, (81)

where mp is the (unique) invariant probability distribution of the chain. Let
H(x, y) be the lowest possible value of H(c) over all self-avoiding trajec-
tories c from x to y. The quantity H(x, y) is called the communication
altitude. Now, let l \ 0 and Vl={x ¥X; V(x) [ l}. Say that x and y
communicate at height l in Vl if H(x, y) [ l. A subset C …X is a cycle if all
populations are able to communicate at height l for some l > 0.
While the hierarchy of cycles may be extremely complex in general, a

remarkable fact is that, for large population sizes, a cycle C which does not
contain the optimal population (ag) reduces to a single population. This
result actually holds for the induced chain on the set of uniform popula-
tions. As evolutionary algorithms can reach uniform populations at null
cost (V(x, (xg))=0), the induced chain nevertheless gives a right picture of
the dynamics for small mutation probabilities. For genetic algorithms, the
critical population size ng has been estimated by Cerf. (7) For our basic
process, the critical value is lower than

ng=max
a ] a*

d(a, ag). (82)

Now, denote by yC the exit time of the subset C (the hitting time of C̄).
The expected value can be computed as

E[yC] % p−He(C), (83)

where, according to ref. 23, He(C) is the exit height of C defined as

He(C)=max
x ¨ C
min
y ¥ C
{H(x, y)−V(x)}. (84)

Let yg denote the hitting time of the absolute optimum. The expected value
of yg can therefore be approximated as

E[yg] % p−H1, (85)
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where

H1=max{He(C); C cycle not intersectingVg}, (86)

andVg=arg min V. For the both algorithms,H1 can be given as

H1=max
x ] (a*)

{H(x, (ag))−V(x)}, (87)

whenever n > ng. As far as our basic example is concerned, ref. 10 shows
that

H1=max
a ] a*

min
b: f(b) > f(a)

d(a, b). (88)

In other words, H1 is the minimal number of mutations required for a
genotype to exit from any local (non global) minimum in the fitness land-
scape. This quantity plays the same role in the implementation of an algo-
rithm as the critical depth in simulated annealing procedures. (22)

3.5.2. Algorithmic Implications of the Results

This section is devoted to the application of Theorem 2.1 to the opti-
mization algorithm that corresponds to our basic model P1 (q=0). An
elistist version of the algorithm can be implemented easily. In such a case,
we have

Prob(E)=1. (89)

As often assumed in genetic algorithms, the set of genotypes E can be
taken as the set of bit strings of length k, i.e.,

E={0, 1}k. (90)

Assume that mutations occur randomly, i.e., every genotype can be reached
by mutation in a single step. The new genotype is randomly chosen among
the 2k possible genotypes in E, and we say that the fitness landscape is
fully connected. For any pair (a, b) in E2, we have p(a, b)=2−k. Then
Theorem 3.1 can be applied to the Markov chain defined by Eq. (6) that
models the basic mutation-selection evolutionary algorithm studied in
ref. 10. Taking q=0, mean hitting times are given by

E[y(a) A] ’
2k

nma
p−1 (91)
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where

A={x ¥X, f(x̂) > f(a)}, (92)

and ma is the number of genotypes in E with adaptive values lower than
f(a)

ma=#{b ¥ E, f(b) > f(a)}=#B. (93)

Equation (85) indicated that fully connected structures become good in the
asymptotical settting (because H1=1). In contrast, Eq. (91) shows that this
may be true for very small mutation probabilities only. Indeed hitting times
become proportional to the size of E and the method has the same order
of performances as enumeration. Fully connected structures are usually
precluded in implementing a optimization algorithm, and some kind of
local search is always considered within the evolutionary procedure.
For instance, single bit mutation is a widely used example of a muta-

tion operator. (5) When mutation occurs, a bit is randomly chosen among
the k possible and flipped. In this case, the minimal number of mutations
required to change the state a into the state b is the number of bits of b that
differ from those of a. This quantity is also known as the Hamming dis-
tance between a and b.
If d(a, b)=d, d steps are required to go from a to b. The d associated

mutations may happen in any of the d! orders. For each step, we have
p(a, b)=1/k. Finally, mean hitting times are given by

E[y(a) A] ’
(p/k)−d(a, A)

nmad(a, A)!
(94)

where

ma=#{b ¥ E, f(b) > f(a), d(a, b)=d(a, A)}. (95)

Again, this result is far more accurate than Eq. (85). In addition, the con-
dition that the population size be greater than a threshold value (which is
necessary and sufficient in the simulated-like framework) is not critical in
studying average fixation times. This explains why the algorithm may work
well even when population sizes are small.

4. CONCLUSION

This article has presented new models of evolving populations that can
be viewed as Markov chains with rare transitions. In such models, the
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probability of a transition from a parent to the offspring is controlled by a
small disorder parameter. In these models, the parameter is the probability
that a genotype undergoes a mutation. In living organisms, these probabil-
ities are usually measured in the range 10−4–10−8.
The models take their inspiration from simulated evolution where the

goal is optimizing an objective function. A basic (and efficient) procedure
based on a fraction of elitism has been modified so that it includes exact
transmission of genotypes as well as random sampling. The modified model
can actually be considered as a natural extension of the classical Wright–
Fisher model (p=0, q=1).
Our main result has described the hitting times of populations of

better adaptive values and hence fixation times (or punctuated equilibria).
There is a close relationship between our results and those obtained in the
large deviations/simulated annealing framework. Both approaches outline
the role of the discrete geometry of the fitness landscape. However there
are important differences as well. Our results are based on algebraic instead
of trajectorial techniques. As a consequence, we were able to establish
sharp asymptotics instead of rough logarithmic equivalents.
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